Developing computational artifacts

Creating computational artifacts is all about making things. Programming is one of the most visible ways we make computational artifacts. In that case, the artifacts are both the programs we made and their outputs. But the term computational artifact is not limited to just computer programs. It can refer to a whole range of things from microprocessors to bar codes to an airplane’s navigation system.

In this illustration, the characters are building, testing, and exploring computational artifacts. The process of creating is not limited to only thinking of ideas, or just assembling parts. The machines you see in these cartoons are symbolic, designed to be open to interpretation and imagination. Here are some ways of looking at them to help you get started:

Grace is building something new. At the moment, she’s using a wrench because it’s the right tool for the work she’s doing. She’s not just using a machine built by someone else; she’s actually making something new herself. Sometimes, creating things is a time-consuming and difficult process, but it gets easier with experience.

Blaze is wearing a glove that controls a much larger and stronger hand. This hand can do many things, including lift up Blaze himself. Blaze’s glove is a metaphor for computational artifacts that allow us to harness the power of machines to carry out massive calculations. When we turn that power back upon itself as we do when we use recursion, higher-order functions, or write a compiler for a language in that same language, things can get very exciting.

Alan is walking on the ceiling. He’s holding a Möbius strip, a topological surface with only one side. When twisted and attached back to itself, a regular flat rectangle can be transformed into a Möbius strip. Using computational thinking, we can change our perspective to solve a complex problem — like Alan, who is upside down! Many computational concepts, like the idea of the Möbius strip, can challenge our assumptions about what’s possible and reveal deeper truths about the properties of the systems we are using or creating. At first this can seem as difficult as walking on the ceiling, but after a while you’ll probably find it fun.

Charles is holding an orb covered in what look like small radio dishes. Computational artifacts need not be designed to work in isolation. They can work together and communicate to accomplish a task, like we see in multi-core processors or parallel computing. Perhaps the radio dishes are helping Charles to hear things that other characters can not. Similarly, algorithms for pattern recognition, signal processing, error correction, and noise reduction enhance our ability to extract information from data. With the help of computational artifacts, we gain new powers.

No comments yet.

Leave a Reply